Large-scale cosmic-ray anisotropy studies at the Pierre Auger Observatory at EeV energies

Piera Luisa Ghia

LPNHE, Universités Paris 6 et 7, CNRS, France

for the Pierre Auger Collaboration

presented by Diego Harari

Centro Atómico Bariloche – Instituto Balseiro, Argentina

Summary of recent results on the search for a dipole pattern in the distribution of arrival directions of UHECRs

Pierre Auger Observatory

Surface Detector
1660 water-Cherenkov stations

3,000 km² 1,5 km grid

25 km² 750 m grid AMIGA: muon detectors

Fluorescence Detector 27 telescopes in 4 locations

HEAT: 3 higher elevation telescopes

Malargüe, Argentina

AERA: radio detection of EAS AMBER, EASIER, MIDAS: GHz detection

Argentina Australia Brazil Croatia Czech Republic France Germany Italy Mexico Netherlands Poland Portugal Slovenia Spain United Kingdom USA Bolivia* Romania* Vietnam* (*Associated)

HYBRID OPERATION

Extensive atmospheric monitoring and calibration

Surface detectors (SD)

"statistical power" ~ 100% duty cycle

Fluorescence detectors (FD)

Complementary view ~ 13% duty cycle

Hybrid operation:

improves precision of energy/angular calibration, consistency tests, etc.

SD Air Shower Reconstruction

Arrival directions:

From fit to arrival times of shower front

Angular Resolution

< 1° if E > 10 EeV

< 2.2° for events with low SD-mutiplicity

Energy Calibration

SD calibrated with FD
FD (calorimetric) energy largely
independent
on composition and hadronic models

Atmospheric attenuation derived from data (constant intensity method)

SEARCH FOR LARGE-SCALE ANISOTROPIES MOTIVATION

Large-scale structure in the distribution of arrival directions may help understand nature and origin of UHECRs

Could signal galactic-extragalactic transition

Escape of galactic CRs at EeV energies might generate dipole pattern.

Amplitude model-dependent, may be few %.

Excess along a plane could manifest as a quadrupole pattern (e.g. galactic disk at EeV energies, supergalactic plane at highest energies)

Extragalactic isotropic CRs may generate small dipole due to our motion (Compton-Getting effect, observed at lower energies, expected below 1%)

Dipole in the Inhomogenous nearby galaxy distribution may manifest also below trans-GZK energies

SUBTLE DETECTOR EFFECTS MUST BE UNDER CONTROL FOR %-LEVEL DIPOLE SEARCHES

$$\omega(t, \theta, \phi, S_{38^{\circ}}) = n_{\text{cell}}(t) \times a_{\text{cell}} \cos \theta \times \epsilon(S_{38^{\circ}}, \theta, \phi)$$

Detection efficiency

Geomagnetic effects

Atmospheric and geomagnetic effects on energy assignment

$$S_{atm}(1000) = [1 - \alpha_P(\theta)(P - P_0) - \alpha_\rho(\theta)(\rho_d - \rho_0) - \beta_\rho(\theta)(\rho - \rho_d)] S(1000)$$

$$S_{geom}(1000) = \left[1 - g_1 \cos^{-g_2}(\theta) \sin^2(\widehat{\mathbf{u}, \mathbf{b}})\right] S(1000)$$

TWO METHODS

1) First harmonic analysis in right ascension α

benefits from almost uniform exposure in right-ascension

E > 1 EeV: Rayleigh
$$I(\alpha) = I_0(1 + r\cos(\alpha - \varphi) + \cdots)$$
.

Standard Fourier analysis weighted by exposure $r = \sqrt{a^2 + b^2}$, $\varphi = \arctan\frac{b}{a}$ $a = \frac{2}{N} \sum_{i=1}^{N} w_i \cos(\alpha_i)$, $b = \frac{2}{N} \sum_{i=1}^{N} w_i \sin(\alpha_i)$ $w_i \equiv [\Delta N_{\text{cell}}(\alpha_i^0)]^{-1}$

E < 1 EeV: East — West
$$I_E(\alpha^0) - I_W(\alpha^0) = -\frac{N}{2\pi} \frac{2\langle \sin \theta \rangle}{\pi \langle \cos \delta \rangle} r \sin(\alpha^0 - \varphi)$$

Removes direction-independent systematics (but reduced sensitivity)

2) Dipole (and quadrupole) patterns

as a function of both Right Ascension AND declination

$$\Phi(\alpha, \delta) = \frac{\Phi_0}{4\pi} \left(1 + d \ \hat{d} \cdot \hat{n} \right)$$

$$r = \left| rac{\langle \cos \delta
angle d_{\perp}}{1 + \langle \sin \delta
angle d_{\parallel}}
ight|$$

r depends on the latitude of the Observatory and range observed

First-Harmonic analysis in Right Ascension

SD Data: 1 January 2004 – 31 December 2012 **E >0.01 EeV**

3.2 x 10⁶ arrival directions

First-Harmonic analysis in Right Ascension DIPOLE PHASE

Astropart. Phys. (2011)

Data until Dec. 2009 E > 0.25 EeV

Hint to a constant value (RA ~ 270°) below 1 EeV

and a transition to a constant value (RA ~ 90°) above 4 EeV

Ongoing test with independent data fit to a constant phase ~ 263° below 2 EeV and/or fit of transition

With data until Dec. 2012

and extension to lower energies (750 m array)

Note:

Galactic center is at RA=268.4°

First-Harmonic analysis in Right Ascension

EQUATORIAL DIPOLE AMPLITUDE

3 bins above 1 EeV have isotropic probability < 1%

First-Harmonic analysis in Right Ascension DIPOLE UPPER LIMITS

EeV energies: bounds are relevant to constrain models in which ankle is signature of galactic-extragalactic transition or in which a dominant galactic component extends to the highest energies

Highest energies: inhomogenous "local" LSS has dipole term that may manifest (with reduced amplitude and distorted by magnetic effects) even below trans-GZK energies

SEARCH FOR DIPOLE AND QUADRUPOLE PATTERNS

As a function of both right ascension and declination

First-Harmonic analyses in Right Ascension benefit from almost uniform exposure of ground-based and high duty-cycle Observatories

But are not sensitive to a dipole component along the Earth's rotation axis

Full multipole analysis:

$$\Phi(\mathbf{n}) = \sum_{\ell \ge 0} \sum_{m=-\ell}^{\ell} \frac{a_{\ell m} Y_{\ell m}(\mathbf{n}) \longrightarrow a_{\ell m}}{a_{\ell m} Y_{\ell m}(\mathbf{n}) \longrightarrow a_{\ell m}} = \int_{4\pi} d\Omega \ \Phi(\mathbf{n}) Y_{\ell m}(\mathbf{n})$$

Incomplete sky-coverage and non-uniform exposure:

$$b_{\ell m} = \int_{\Delta\Omega} d\Omega \ \omega(\mathbf{n}) \Phi(\mathbf{n}) Y_{\ell m}(\mathbf{n}) = \sum_{\ell' \geq 0} \sum_{m' = -\ell'}^{\ell'} a_{\ell' m'} \int_{\Delta\Omega} d\Omega \ \omega(\mathbf{n}) Y_{\ell' m'}(\mathbf{n}) Y_{\ell m}(\mathbf{n})$$

 $a_{\ell m}$ can be recovered without bias if

 $\Phi(\mathbf{n})$ has no significant multipoles beyond ℓ_{max}

Sky-maps of significances (60° smoothing) excess/deficit relative to isotropic expectations and direction of fitted dipole

DATA: 1 January 2004 – 31 December 2011 SD 1500 m array – Zenith < 55°

ApJL and ApJS (2013)

DATA: 1 January 2004 – 31 December 2012

FIT TO A DIPOLE PATTERN

FIT TO DIPOLE + QUADRUPOLE

$$\Phi(\mathbf{n}) = \frac{\Phi_0}{4\pi} \left(1 + r \, \mathbf{d} \cdot \mathbf{n} + \lambda_+ (\mathbf{q}_+ \cdot \mathbf{n})^2 + \lambda_0 (\mathbf{q}_0 \cdot \mathbf{n})^2 + \lambda_- (\mathbf{q}_- \cdot \mathbf{n})^2 \right)$$

$$\beta \equiv \frac{\lambda_+ - \lambda_-}{2 + \lambda_+ + \lambda_-}$$

Hints of a quadrupole moment at EeV energies

UPPER LIMITS (99%CL)

Constrain galactic origin of light component

MODEL: stationary, uniformly distributed isotropic sources in the galactic disk regular disk (BSS) and halo (A) galactic field + Kolmogorov turbulent component

FULL-SKY SEARCH ABOVE 10 EeV (Joint Auger – TA project, ongoing)

UNAMBIGOUS measurement of multipoles requires full-sky coverage

Ongoing joint Auger-TA project to combine data from two hemispheres and measure dipole above 10 EeV with full-sky coverage

Results sensitive to relative exposures of the two experiments

$$\omega(\mathbf{n};b) = \omega_{\mathrm{TA}}(\mathbf{n}) + b\omega_{\mathrm{Auger}}(\mathbf{n})$$

Iterative process to determine "fudge factor" *b* that absorbs systematics (energy scale, etc.) through analysis of overlap region (declinations [-15°,25°])

SUMMARY/OUTLOOK

UPDATED UPPER LIMITS ON DIPOLE AND QUADRUPOLE PATTERNS

Challenge to models with a galactic light component at EeV energies (measurements suggest light composition around 1 EeV)

HINTS OF LARGE-SCALE ANISOTROPY

Constant phase of first-harmonic in right ascension in independent energy ranges points to ~ 270° (GC direction) below 1 EeV and ~ 90° at higher energies Ongoing test with independent data

Dipole amplitudes with isotropic probability < 1% in some energy ranges

Must be scrutinized with further data

JOINT AUGER - TA FULL SKY ANALYSIS

In progress

First-Harmonic analysis in Right Ascension DIPOLE PHASE

Midterm status of the test with independent data

